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A DISCRETE MODEL FOR THE PREDICTION OF
SUBSEQUENT YIELD SURFACES IN POLYCRYSTALLINE

PLASTICITY

KERRY S. HAVNER

Department of Civil Engineering, North Carolina State University, Raleigh

Abstract-A discrete model suitable for the analysis of polycrystalline aggregate response under macroscopically
uniform, quasi-static loading is developed, with particular emphasis on the characteristics of subsequent yield
surfaces in stress or strain space. Internal stress and deformation states are determined from approximating,
piecewise linear infinitesimal displacement fields within crystal grains, based upon broadly defined constitutive
behavior which permits inclusion of cubic or hexagonal crystal anisotropy and relatively general hardening
laws over crystallographic slip systems. Appropriate aggregate matrices are established as symmetric, positive­
definite, and internal fields corresponding to the solution of the discrete model are proved to be unique. It is
further shown that the final calculation of incremental crystal shears can be posed as a quadratic programming
problem.

1. INTRODUCTION

THE first satisfactory theory for predicting the plastic deformation of polycrystalline
aggregates from phenomenological laws of single crystal behavior was advanced by
Taylor [1, 2]. In Taylor's now classic work, the simplest possible kinematic model was
adopted consistent with the concept of a deformed continuum~uniform strain throughout
the crystal grains. This theory was generalized by Bishop and Hill [3-5] to enable the
approximate calculation of macroscopic yield surfaces of pronounced yielding (neglecting
elastic behavior) and modified by Lin [6J to incorporate elastic strains. Subsequent studies
were made by Payne et al. [7, 8]. Other theories and models of interacting crystals, all
utilizing isotropic elastic field solutions in one form or another, have been proposed and/or
investigated by Kroner '[9J, Budiansky and Wu [10], Hutchinson [11, 12], Hill [13J, and
Lin et al. [14-23], with the models of Lin et aI., most nearly satisfying all equilibrium and
kinematic conditions in numerical evaluations.

In the present paper, a new discrete aggregate model suitable for predicting macro­
scopic stress-strain relations and aggregate yield surfaces is presented which incorporates
certain features of previous models but is more general in several important respects.
Moreover, the model is closely related to theoretical characteristics of anisotropic crystal
and aggregate behavior established by Hill [24, 25].

2. RELATIONS BETWEEN MICRO- AND MACRO-FIELDS

Before proceeding to a general presentation and analysis of the discrete model, we
first derive some general relationships involving volume averages of aggregate continuum
micro-fields. Consider an arbitrary volume Vof surface S within a polycrystalline metal

719



720 KERRY S. HAVNER

specimen. We denote any statically admissible stress field in V, corresponding to a system of
self-equilibrating tractions T* on S, by ~* (with tensor components ~G) and any continuous,
piecewise differentiable infinitesimal displacement field by bUD. A straightforward applica­
tion of Gauss' theorem then yields

(2.1 )

wherein

(2.2)

locally within each crystal grain VM of V. (See the Appendix for definitions.) To obtain an
equivalent expression for the right-hand side of(2.1) in terms ofmacroscopic stress and strain
over the smallest possible volume sample, we introduce the mathematical model of an
aggregate of identical "unit cubes" and define macroscopi.cally uniform fields

i i
T*(At) = - T*(A i-)

(2.3)

(2.4)

(2.5)

(2.7)

(2.8)

(2.6)

(2.9)

(respectively kinematically and statically admissible). At denotes the unit cube face corres­
ponding to the positive coordinate axis Xi and ~o is a constant vector independent of position
over At (unless the aggregate extends in only two directions and At is a free face). Macro­
scopic stress and incremental strain are evaluated in a natural way as

aG = f T1 dAt

beZ = t(J ~J dAt + f b? dAt).

Upon substitution of (2.3H2.5) into (2.1), we find

f T* . bUD dS = f at/:J dAt .

From considerations of moment equilibrium

fh dAt = Jtt dAj+ •

Hence, the macroscopic stress tensor is symmetric and, from (2.6) and (2.7), (2.1) can be
written

f (~* . b~O) dV = 0'* . bED

with V now representing the unit volume of the polycrystalline cube. Furthermore, from
(2.2), (2.3) and (2.6),

(2.10)



(2.11 )

(2.12)
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and, from (2.4) and (2.5) and force equilibrium over any interior plane area normal to a
coordinate axis,

(J* = f ~* dV.

Equations (2.10) and (2.11) are of course equivalent to (2.6) and (2.5), and equation (2.9)
(together with these definitions) is the well known virtual work equation for the poly­
crystalline aggregate. We merely remark here that by mathematically defining states of
homogeneous macrostrain and macrostress (2.3), (2.4) the relationship (2.9) follows
immediately and the various additional arguments of Bishop and Hill [3], Kocks [26] and
Hill [25J are unnecessary. Bishop and Hill's criterion, which can be written

fdJc5ur) dA i = UTj dA i ) f (<5ur) dAi

for arbitrary i,j, k, is in fact distinctly different from (2.3), (2.4), and neither condition implies
the other. In addition, although the macroscopic stress tensor is symmetric, equations
(2.3) and (2.4) do not preclude the existence of small macroscopic couple stresses (depending
upon the distribution of crystal orientations within the cube). These are determined as

dt* = f (r x T*) dAt

where r is the position vector to a point on the faceAt.

(2.13)

3. SELECTION OF MODEL FOR POLYCRYSTALLINE AGGREGATE ANALYSIS

Ifwe were to consider only (idealized) elastically isotropic crystals in defining an aggre­
gate boundary value problem, elastic field solutions for point body forces could be intro­
duced (as in [17, 18,20]), thus permitting both non-uniform microstress and displacement
fields over unit cube faces Ai while still satisfying the virtual work equation (2.9). To con­
sider aggregates of anisotropic crystals, however, (thereby enabling investigation of the
effects of texturing on macroscopic yield surfaces, for example), it is almost mandatory that
a model with either uniform tractions or (at most) linearly varying displacements over the
faces Ai be adopted. The latter is chosen herein as the preferred approximation on the basis
of the following argument.

Consider a thin-walled tube subjected to, say, axial load and internal pressure. The
wall thickness of specimens studied experimentally in combined stress tests is often in the
range 1-2 mm, with from 10-30 grains through the thickness (see [27, 28]). Thus, as an
idealization of the physical situation, we assume a thickness of 1 mm and define a unit
cube V = 1 mm3 containing on the order 1000 crystal grains in the corresponding "flat
sheet" representation (i.e. a macroscopic plane stress problem). Then the longitudinal faces
(Fig. 1) become planes of symmetry in our model of identically deforming cubes. We further
assume the distribution of crystal orientations to be symmetric with respect to transverse
planes. Hence, (2.3) and (2.4) are satisfied, with displacement components constant or
corresponding stresses zero on the various faces. If uniform tractions had been imposed
over the cube, the transverse and longitudinal faces would no longer be planes of symmetry
and adjacent cubes could not deform identically. Thus, we select as a model for analysis a
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unit cube (of generally anisotropic crystals) on each of whose faces Ai either infinitesimal
displacements are prescribed, to give the appropriate macroscopic strain increment
[through (2.6)J, or tractions are zero (free face).

Longitudinal planes

of symmetry

./ Transverse plan es
, of symm etry

FIG. I. Idealized unit cube in thin-walled polycrystalline specimen.

4. CONSTITUTIVE EQUATIONS AND RESOLUTION OF INTERNAL
STRAIN FIELD

Let Cc denote the positive-definite crystal elastic compliance matrix referred to the
geometric (lattice) axes and C denote the local elastic compliance referred to the unit cube
axes Xi' Then

(4.1)

where A is the stress vector transformation matrix from the cube axes to the lattice axes
(an orthogonal rotation in six-dimensional stress space, whence A-I = AT). We define
b~(e) as the infinitesimal strain field determined by assuming that the aggregate response
to imposed macrostrain increment DE is wholly elastic:

b~(e) = D T bu(e) = r bE (4.2)

in which r is a tensor (matrix) function of position within V, due to the elastic inhomo­
geneity. We further denote

(4.3)

as the infinitesimal strain due to internal slip and self-straining and define a related stress
field

(4.4)
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Then, from (2.9), (2.10) and (4.2H4.4),

f J~*. J~(e) dV = 150'*. JE

f J~*. J~s d V = 0

(4.5)

(4.6)

(4.7)

wherein ~* may be~, ~(e) = C-l~(e), or ~s. Moreover, a symmetric, inverse elastic compliance
matrix of the aggregate can be calculated as

C;;;;cro = f yTC-1YdV.

The local micro-plastic strain increment J~p is determined by the incremental plastic
shears JYk on the N crystallographic slip systems of the crystal grain through the trans­
formation

(4.8)

with the resolved shear stresses 'k in these slip systems evaluated as

(4.9)

in which Nc is referred to the crystal axes. The transformation matrix N is defined in terms
of its kth row vector N k in the Appendix. (Opposite senses of slip in the same crystallo­
graphic slip system are denoted by different k's so that JYk is always non-negative.) From
(4.3), (4.4) and (4.8), J~s can also be expressed

J~s = C-l(J~S_J~P) (4.10)

and, with the aid of (2.9), (4.5), (4.6), (4.9) and some additional algebra, we can establish the
inequality

f Jrs . 151 d V < 0, (4.11 )

which condition will prove of consequence in our investigation of a Bauschinger effect in
Section 7. Lastly, we introduce a general crystal hardening matrix H [24, 29J relating incre­
ments in critical stresses J'~r in the various slip systems to the incremental shears JYk :

Jrcr = H(1) 151. (4.12)

For the present, we require only that H be positive-semidefinite. Yielding in a particular
critical (potentially active) slip system occurs only when J'k = J'~r' A critical system is of
course defined by 'k = f J,~.. where the latter is integrated over the plastic strain history
from an initial critical stress '0'

5. DISCRETIZATION OF AGGREGATE MODEL AND GENERAL SOLUTION
FOR CRYSTAL SHEARS

To discretize the above-defined aggregate model, we introduce a kinematically admis­
sible, approximating infinitesimal displacement field which is continuous throughout the
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aggregate and piecewise linear within each crystal grain. Correspondingly, a crystal sub­
volume with constant microstrain field is represented by a tetrahedral element, herein
called a crystallite, with nodal points 1, J, K, L (Fig. 2). The infinitesimal displacement
(ju(x) within the crystallite q is readily expressed in terms of the nodal displacements
(juM as (see [30J, for example)

(ju(x) = L <P'M(x) ()UM

M(q)

(5.1)

I

L

wherein

J

XI

FIG. 2. Tetrahedral crystallite showing orientation of crystal axes and kth slip system.

<P'M(x) = (X'M+f3'Mj X j • (5.2)

The constants (X'M, f3'Mj are determined from the nodal coordinates ofq through the equations
<P'M(xJ

) = (j~, J, M = 1, ... ,4 (where (j~ is the Kronecker delta). The local incremental
strain field is

in which

(j~(q) = L fJ~ (juM

M(q)

(5.3)

fJ~t = D T <P'M(x). (5.4)

From virtual work considerations (see [31J for additional details), the incremental dif­
ferential field equation D (j~ = 0 within the unit cube is replaced by the set of discrete
equations

L D<P'f(j~(q)dYq = 0 (5.5)
q(J)

over the crystallite nodes J at which disphacements are to be determined. Resolving the
infinitesimal strain field as in (4.2), (4.3), then, from (4.4), (4.8), (5.3) and (5.4), equations
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(5.5) are separable into two sets, the first of which can be solved independently ofthe second.
These equations are written in general matrix form as

BfSB j bU(e) == K bU(e) = - BfSBo bUD

K bUs = BfSNTbf

(5.6)

(5.7)

(5.8)

in which bu(e) = (... , bii(e)M, ... ) is the overall vector of unknown elastic nodal displace­
ments, bUo is the vector of prescribed displacements corresponding to bE through (2.3) and
(2.6), bUs = ( ... , biiS(M), ... ) is the overall vector of "slip" displacements, and bf =

( ... , bl(q), ... ) is the overall vector of incremental shears. The matrices Bi (defined over
nodes J of unknown displacements) and Bo (defined over nodes J O of prescribed displace­
ments) are composed of 6 by 3 elements BqJ given as

{
A(q)P: = A(q)D

T¢~ if J is a node of (q)
B -

qJ - 0 if J is not a node of (q).

The matrices Sand N are diagonal in the sub-matrices C; 1 and Nc '

S = rC;l J, (5.9)

and the aggregate elastic "stiffness" matrix K is symmetric and positive-definite, arbitrary
rigid body motion having been eliminated from the solution by prescribing bUo. (In the
above, all crystallites have been chosen of equal volume ~ « 1 for convenience. This is
easily realized geometrically since a cubic volume can be separated into six equal volume
tetrahedrons, and the unit cube can be divided into as many sub-cubic grains as desired.)

From (5.3), (5.6) and (5.7), the overall vectors of strains bE(e) = (... , b~l=l, ...) and
bEs = (... , b~(q), ...) are

bE(e) = IF[I - BiK - 1BrS]Bo bUD

bEs = lFBiK - 1BrSN bf

(5.10)

(5.11 )

with A = r A(q) J. (It is understood that Nand br are defined only over those crystallites
q containing potentially active slip systems.) The overall vector of incremental, resolved
shear stresses tfs = (... , bt(q), . ..) due to internal slip follows from (4.8H4.10) and (5.11):

(5.12)

wherein

(5.13)

In Section 6 it is proved that the symmetric matrix p s is positive-definite, whence, forming
the scalar product of (5.12) with bf, we have a discrete counterpart of(4.11). The influence
(or interaction) matrix Q is analogous to the integrodifferential operators on bl;P(x) in
[20,32].

From (4.4), (4.9), (5.10) and (5.12), denoting bT = (... , bt(q) , ...), we have

bT = NQ[Bo bUD _NT bf]. (5.14)

Since, in each critical system,

(5.15)
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the final matrix equation for the incremental crystal shears can be expressed (denoting
H = rH{q)J)

(5.16)

with the equality satisfied for each active system (<5j\ > 0). The matrix P = H +NQN T

is positive-definite over critical (hence, active) slip systems, and (5.16) yields a unique
solution for <5f, as proved in the following section.

6. UNIQUENESS OF INTERNAL FIELDS AND A QUADRATIC
PROGRAMMING PROBLEM

Introducing the positive-definite scalar average

fie = L <5~{q). C(q) b~(q) v" > 0
q

we have, from (4.1), (4.9) and (5.13)-(5.14),

ue = (BobUO-N T bfYQ(BobUO-N T bf)v" > O.

(6.1)

(6.2)

Assume two distinct sets of internal fields b~(q), b~(q), b?(q) and <5~~), b~~), <5?~), both of which
satisfy all appropriate equations of the discretized model for an infinitesimal macrostrain
bE (i.e. uniquely prescribed bUo). Denoting their differences by Ab~(q) = b~{q) b~~), etc.,
then from the above

(6.3)

This equation is written only over potentially active slip systems corresponding to the
current states of internal stress and strain, since the active systems for either set of incre­
mental shears will belong to this critical group. Thus, ps = NQN T is positive-definite
over critical systems. We also find, from (4.10), (5.11) and (6.2),

I Ab~(q). Ab~fq)+MfTNQNT Abf = 0.
q

(6.4)

Introducing an inequality due to Hill [24J written over critical systems of a crystal grain,

A<5~(q)' Ab~~) 2: Ab?~)H(q)Ab?(ql' (6.5)

we conclude from the above that, for H 2: 0, the incremental shears are unique. It follows
from (5.14) that the incremental stress field is unique. Consequently, the infinitesimal total
strain field is unique, and the proof is complete. The matrix P = H+NQN T in (5.16) is
obviously positive-definite.

Since an admissible solution of (5.16) is constrained by the physical requirement
bYk 2: 0 for all k (which is implicit in 6.5), determination of the unique aggregate response
from a particular deformed state is not necessarily a straightforward calculation. If, for
example, (5.16) is solved for bf on the expectation that all critical slip systems will be active
in a macrostrain increment bE, certain of the b}\ may be computed as negative. In this
event (5.16) must again be solved, after eliminating the appropriate slip systems (thereby
changing P), until all incremental plastic shears are positive. This could prove to be a
rather lengthy procedure for a large number of critical systems. Alternatively, evaluation
of the <5Yk may be posed as a quadratic programming problem, as follows. We form the
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functional

(6.6)

wherein bt is any set of incremental shears, defined over the critical slip systems, which
satisfies the inequality bt 2: O. Then, from (5.16) and (6.6),

unless bt == br. Hence, the unique solution br of the discrete model minimizes the quad­
ratic functional I(bt) subject to the linear constraints bYk 2: O. For a discussion ofthe appli­
cation of nonlinear programming techniques in classical (macroscopic) plasticity theory,
see [33].

7. GENERAL CHARACTERISTICS OF SUBSEQUENT YIELD SURFACES

At a particular stage of aggregate straining, a subsequent yield surface is defined (in
stress or strain space) by determining the positions of the various yield hyperplanes. Con­
sider the case of applied biaxial strain E = (C11' C22)' From (4.2)

j:(e) _ 'Vi "
~(q) - I (q)" (7.1)

in which the columns of the matrix Y(q) are found from separate evaluations of the elastic
solution (5.10) for the states C11' C22 = 0 and C22' C11 = 0, respectively. The distance to the

kth yield plane fk = 0 in macrostrain space is then determined from (4.4), (4.9), (7.1) and
the equality i k = i~r as

(7.2)

and, in macrostress space, the distance to the yield hyperplane Jk = 0 is found to be

(7.3)

in which

(7.4)

is the residual microstress that would remain upon unloading to zero macrostress (if the
subsequent yield surface contains the origin in stress space). In the above, em• cro is calcu­
lated from (4.7) and (f = (0"11,0"22) is computed using (2.11). The aggregate yield surface
is, of course, the inner bounding set of all such hyperplanes (7.2) [or (7.3)] in the respective
strain (or stress) space. Apparent macroscopic plastic strain and "plastic stress" increments
are appropriately defined as

(7.5)

(7.6)
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From a general inequality established by Hill [25J, the following orthogonality conditions
apply to the aggregate continuum model :

b(Je' bEP ::;; 0 (7.7)

bEe' b(JP ::;; 0 (7.8)

in which bEe is any macrostrain increment which produces purely elastic response of the
aggregate, and <5(Je = C;;'a~ro b&e. The orthogonality relations can be interpreted as general­
ized normality conditions on plastic strain and plastic stress increments in stress and strain
space, respectively. These inequalities also hold for bi:P and (j(JP of the discrete model (7.5),
(7.6), save for a possible O(h) discretization error, where h is an average crystallite dimension.
(A strict proof of convergence of the discrete model solution, with decreasing element size,
to that of the corresponding aggregate continuum is inCluded within a forthcoming paper
[34].)

Consider now the change in position of an active plane with increasing plastic defor­
mation. Since k corresponds to the active sense of slip in a particular crystallographic
system, we redefine it as (k +)and write

<5D(k+) = (<5i1~+)-brD/IINkC(~rr(q)ll.

From (5.12) [or (4.11) for the continuumJ

L(L <5ikbYk) v,. = - bf . ps bf v,. < O.
q k ~)

(7.9)

(7.10)

(7.11)

As this inequality must hold locally for the majority of active systems, we can assume it
holds for the particular k of interest. Thus <5Tk < 0 and (7.9)

bD(k+) = (bi'1~+)+lbim/IINkC(~/Y(q)ll.

Similarly, the change in the distance (in the opposite direction in strain space) to the parallel
plane corresponding to the negative sense of slip (k - ) in this crystallographic system is

(7.12)

Thus, if the change in crystal hardening br~~-) in reverse slip is less than the change in the
E

resolved shear stress due to internal slip and self-straining, <5D(k-) < 0 and the two hyper-
planes move in the same direction. This is certainly the case when the crystal strain-softens
in reverse slip (as is suggested by the experimental work of Paterson [35J on copper), and
there will be a corresponding strong Bauschinger effect in macrostrain space. There will

E E

be at least a weak Bauschinger effect if only <5r~~-) ::;; br~~+>' hence bD(k_) < bD(k+)' This
inequality is satisfied for both Taylor hardening [1, 36J and the translational hardening
adopted by Budiansky and Wu [10] and Tung and Lin [19J, as well as for any positive
combination [32J

H = h(y)1 +c(y)NNT
. (7.13)

(I is an N by N matrix all of whose elements are unity and hand c are scalar hardening
functions determined from single crystal tests.) In addition, H of (7.13) is at least positive-
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semidefinite, and if c > 0, H > °over critical systems [24, 32]. It can also be shown that

Jb'tr
• by d V < 0. (7.14)

(See [31] for details.) Thus, from (7.3) and the above, the Bauschinger effect also obtains
in macrostress space. A digital computer program for studying the quantitative effects of
aggregate texturing, crystal structure and anisotropy, and crystal hardening laws on
macroscopic yield surfaces is in preparation, with numerical results to be presented in
subsequent papers.
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APPENDIX

Internal stress and infinitesimal strain tensors are expressed in vector form as

~ = ((II' J(2KI2' J(2KI3' (22' J(2K23' (33f

b~ = (b~l1' J(2) b~12' J(2) b~13' b~22' J(2) b~23' b~33)T

(AI)

(A2)

from which the equilibrium and kinematic equations can be written D~ = 0 and D T bu =
b~, with

I 1

°1 J202 J20 3 0 0 0

1 1
D= 0

Jl I 0 °2 J20 3 0 (A3)

oo 1
72°1 0
V

(wherein 0; denotes partial differentiation with respect to the corresponding spatial co­
ordinate).

The kth row vector of the crystal transformation matrix N is given in terms of unit
vectors «pk, A.k in the normal and glide directions, respectively, of the kth crystallographic
slip system:

Nk = [4>~A~' J2(4)~A~+4>~A~),*4>~A~+4>~A~),

4>V~, *4>~A~ +4>~A~), 4>~A~J (A4)

(Received 25 May 1970; revised 8 September 1970)

A6cTpaKT-OnpCL\CJIlICTClI L\HCKpCTHall MOL\CJlb, npHrOL\Hall L\JllI aHaL\H1a nOBCL\CHHlI nOJlllKpHCTaJlJlH­

'1CCKOrO 1anOJlHHTCJllI nOLl BJlHlIHHCM MaKpOCKOnH'ICCKH OL\HOPOL\HOH, KBa1HCTaMH'ICCKOH Harpy3KJ1, co

cnCI.\HaJlbHbIM y'lCTOM xapaKTcpHCTHK nOBcpXHOCTCH TC'ICHHlI B npOCTpaHCTBC HanplllKCHJ1H H L\cljIopMallJ1H.

BHYTPCHIIHC HarrplllKCHHlI H L\cljIopMallHH orrpCL\CJllIIOTClI nyTcM npJ16J1HlKCHHlI KYCO'lHbIX, JlHHCHHbIX,

HHljIHHHTC1HMaJJbHbIX rrOJlCH L\cljIopMal.\HH C KpHCTaJlJlH'ICCKI1MH 1cpHaMH, Ha OCHOBC WHPOKO orrpCL\CJlCH­

Horo KOHCTI.\TYTHBHoro rrOBCL\CHHlI, KOTOpOC L\aCT B01MOlKHOCTb BKJlIO'IHTb Ky6H'ICCKYJO HJlH rCKcaro­

HaJJbHYIO KpHCTaJlJlH'ICCKYIO aHH30TponHIO H COOTBCCTBCHHO 06WHC 1aKOHbi ynpO'lHCHlIlI L\JllI KpllCTa­

JlJIH'ICCKHX CHCTCM CKOJlblKCHMlI. BbIBOL\lITClI COOTBCCTBYIOli.\HC MaTpHl.\1l 3arrOJlHJ1TCJllI B Ka'lCCTBC

CHMMCTPH'ICCKI.\X H rrOJlOlKHTCJlbHO orrpCL\CJlCHHbIX. BHYTPCHHHC nOJlll, COOTBCCTBYIOli.\HC pCWCHHIO

AHCKPCTHOH: MOL\CJlH, OKa1blBalOTClI CL\HHCTBCHHbIMH. ,l.l,aJlcc yKa1aHo, 'ITO OCTaTO'lHOC PCWCHlIC AJllI

rlpHpali.\CHHlI CL\BHrOB KpHCTaJlJlOB MOlKHO paCCMaTpllBaTb B Ka'lCCTBC 3aL\a'l1l KBaL\paTa'lCOK0110

nporpaMMHpOBaHlfll.


