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A DISCRETE MODEL FOR THE PREDICTION OF
SUBSEQUENT YIELD SURFACES IN POLYCRYSTALLINE
PLASTICITY

KErRY S. HAVNER

Department of Civil Engineering, North Carolina State University, Raleigh

Abstract—A discrete model suitable for the analysis of polycrystalline aggregate response under macroscopically
uniform, quasi-static loading is developed, with particular emphasis on the characteristics of subsequent yield
surfaces in stress or strain space. Internal stress and deformation states are determined from approximating,
piecewise linear infinitesimal displacement fields within crystal grains. based upon broadly defined constitutive
behavior which permits inclusion of cubic or hexagonal crystal anisotropy and relatively general hardening
laws over crystallographic slip systems. Appropriate aggregate matrices are established as symmetric, positive-
definite, and internal fields corresponding to the solution of the discrete model are proved to be unique. It is
further shown that the final calculation of incremental crystal shears can be posed as a quadratic programming
problem.

1. INTRODUCTION

THE first satisfactory theory for predicting the plastic deformation of polycrystalline
aggregates from phenomenological laws of single crystal behavior was advanced by
Taylor {1, 2]. In Taylor’s now classic work, the simplest possible kinematic model was
adopted consistent with the concept of a deformed continuum—uniform strain throughout
the crystal grains. This theory was generalized by Bishop and Hill [3-5] to enable the
approximate calculation of macroscopic yield surfaces of pronounced yielding (neglecting
elastic behavior) and modified by Lin [6] to incorporate elastic strains. Subsequent studies
were made by Payne ez al. [7, 8]. Other theories and models of interacting crystals, all
utilizing isotropic elastic field solutions in one form or another, have been proposed and/or
investigated by Kroner 9], Budiansky and Wu [10], Hutchinson [11, 12], Hill [13], and
Lin et al. {14-23], with the models of Lin et al., most nearly satisfying all equilibrium and
kinematic conditions in numerical evaluations.

In the present paper, a new discrete aggregate model suitable for predicting macro-
scopic stress—strain relations and aggregate yield surfaces is presented which incorporates
certain features of previous models but is more general in several important respects.
Moreover, the model is closely related to theoretical characteristics of anisotropic crystal
and aggregate behavior established by Hill [24, 25].

2. RELATIONS BETWEEN MICRO- AND MACRO-FIELDS

Before proceeding to a general presentation and analysis of the discrete model, we
first derive some general relationships involving volume averages of aggregate continuum
micro-fields. Consider an arbitrary volume V of surface S within a polycrystalline metal
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specimen. We denote any statically admissible stress field in V, corresponding to a system of
self-equilibrating tractions T* on S, by {* (with tensor components {¥) and any continuous,
piecewise differentiable infinitesimal displacement field by éu®. A straightforward applica-
tion of Gauss’ theorem then yields

f (€* . 080 dV = f (T* .ou®) dS (2.1)
Vv S

wherein
0% = DTou® (2.2)

locally within each crystal grain V}, of V. (See the Appendix for definitions.) To obtain an
equivalent expression for the right-hand side of (2.1) in terms of macroscopic stress and strain
over the smallest possible volume sample, we introduce the mathematical model of an
aggregate of identical “‘unit cubes” and define macroscopically uniform fields

SUO(A]) = SuP(A;)+€° (23)
THA) = —THAT) (2.4)

(respectively kinematically and statically admissible). A;" denotes the unit cube face corres-
ponding to the positive coordinate axis x; and ¢° is a constant vector independent of position
over A;" (unless the aggregate extends in only two directions and A;" is a free face). Macro-
scopic stress and incremental strain are evaluated in a natural way as

ok = f THdA; (2.5)
3¢9, = %(J O day + f Lo dA;). (2.6)
Upon substitution of (2.3)«2.5) into (2.1), we find
f T*.0u®dS = f ot A} 2.7)
From considerations of moment equilibrium
f T*dA; = [ T¥dA}. (2.8)

Hence, the macroscopic stress tensor is symmetric and, from (2.6) and (2.7), (2.1) can be
written

f(g* LOEOY AV = 6* . 5e° (2.9)

with V now representing the unit volume of the polycrystalline cube. Furthermore, from
(2.2), (2.3) and (2.6),

5g° = f (6E°) dV (2.10)
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and, from (2.4) and (2.5) and force equilibrium over any interior plane area normal to a
coordinate axis,

o* :fz;*dv. @2.11)

Equations (2.10) and (2.11) are of course equivalent to (2.6) and (2.5), and equation (2.9)
(together with these definitions) is the well known virtual work equation for the poly-
crystalline aggregate. We merely remark here that by mathematically defining states of
homogeneous macrostrain and macrostress (2.3), (2.4) the relationship (2.9) follows
immediately and the various additional arguments of Bishop and Hill [3], Kocks [26] and
Hill [25] are unnecessary. Bishop and Hill’s criterion, which can be written

J('f’?‘éu?) d4; = U 7i"}‘ dAf) f(éu.?) d4; (2.12)

for arbitrary i, j, k, is in fact distinctly different from (2.3), (2.4), and neither condition implies
the other. In addition, although the macroscopic stress tensor is symmetric, equations
(2.3) and (2.4) do not preclude the existence of small macroscopic couple stresses (depending
upon the distribution of crystal orjentations within the cube). These are determined as

* = f (rx T%) d4; 2.13)

where r is the position vector to a point on the face4;".

3. SELECTION OF MODEL FOR POLYCRYSTALLINE AGGREGATE ANALYSIS

If we were to consider only (idealized) elastically isotropic crystals in defining an aggre-
gate boundary value problem, elastic field solutions for point body forces could be intro-
duced (as in [17, 18, 20]), thus permitting both non-uniform microstress and displacement
fields over unit cube faces A; while still satisfying the virtual work equation (2.9). To con-
sider aggregates of anisotropic crystals, however, (thereby enabling investigation of the
effects of texturing on macroscopic yield surfaces, for example), it is almost mandatory that
a model with either uniform tractions or (at most) linearly varying displacements over the
faces A4; be adopted. The latter is chosen herein as the preferred approximation on the basis
of the following argument.

Consider a thin-walled tube subjected to, say, axial load and internal pressure. The
wall thickness of specimens studied experimentally in combined stress tests is often in the
range 1-2 mm, with from 10-30 grains through the thickness (see [27, 28]). Thus, as an
idealization of the physical situation, we assume a thickness of 1 mm and define a unit
cube V = 1 mm’ containing on the order 1000 crystal grains in the corresponding “flat
sheet” representation (i.e. a macroscopic plane stress problem). Then the longitudinal faces
(Fig. 1) become planes of symmetry in our model of identically deforming cubes, We further
assume the distribution of crystal orientations to be symmetric with respect to transverse
planes. Hence, (2.3) and (2.4) are satisfied, with displacement components constant or
corresponding stresses zero on the various faces. If uniform tractions had been imposed
over the cube, the transverse and longitudinal faces would no longer be planes of symmetry
and adjacent cubes could not deform identically. Thus, we select as a model for analysis a
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unit cube (of generally anisotropic crystals) on each of whose faces A, either infinitesimal
displacements are prescribed, to give the appropriate macroscopic strain increment
[through (2.6)], or tractions are zero (free face).

Longitudinal planes
of symmetry ~

Transverse planes
» of symmetry

1mm.

F1G. 1. Idealized unit cube in thin-walled polycrystalline specimen.

4. CONSTITUTIVE EQUATIONS AND RESOLUTION OF INTERNAL
STRAIN FIELD

Let C,_ denote the positive-definite crystal elastic compliance matrix referred to the
geometric (lattice) axes and C denote the local elastic compliance referred to the unit cube
axes x;. Then

C=ATCA “.1)

where A is the stress vector transformation matrix from the cube axes to the lattice axes
(an orthogonal rotation in six-dimensional stress space, whence A~ ! = AT). We define
5&@© as the infinitesimal strain field determined by assuming that the aggregate response
to imposed macrostrain increment o¢ is wholly elastic:

089 = DTou'® = Yo (4.2)
in which Y is a tensor (matrix) function of position within ¥, due to the elastic inhomo-
geneity. We further denote

SE° = DTou’ = 88— 5E©@ 4.3)
as the infinitesimal strain due to internal slip and self-straining and define a related stress
field

O = sL—C18E@. (4.4)
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Then, from (2.9), (2.10) and (4.2){4.4),

f SC* . SE@ AV = do*. e 4.5)

f SC*. e dV =0 (4.6)

wherein {* may be {,{® = C~ &', or {*. Moreover, a symmetric, inverse elastic compliance
matrix of the aggregate can be calculated as

Cracro = f Y'C 'y dv. 4.7)
The local micro-plastic strain increment 6&” is determined by the incremental plastic

shears dy, on the N crystallographic slip systems of the crystal grain through the trans-
formation

8P = NT gy = 36— C 8¢ ' (4.8)
with the resolved shear stresses 7, in these slip systems evaluated as
T = N{ = NAC, 4.9)

in which N_ is referred to the crystal axes. The transformation matrix N is defined in terms
of its kth row vector N, in the Appendix. (Opposite senses of slip in the same crystallo-
graphic slip system are denoted by different k’s so that dy, is always non-negative.) From
(4.3), (4.4) and (4.8), 6’ can also be expressed

0C = C~1(8&5—oEP) (4.10)
and, with the aid of (2.9), (4.5), (4.6), (4.9) and some additional algebra, we can establish the
inequality

f&zS.ade<0, @.11)

which condition will prove of consequence in our investigation of a Bauschinger effect in
Section 7. Lastly, we introduce a general crystal hardening matrix H [24, 29] relating incre-
ments in critical stresses 7%, in the various slip systems to the incremental shears dy, :

ot = H(y) ov. (4.12)

For the present, we require only that H be positive-semidefinite. Yielding in a particular
critical (potentially active) slip system occurs only when 67, = 1%,. A critical system is of
course defined by 7, = [ d7k,, where the latter is integrated over the plastic strain history
from an initial critical stress 7.

5. DISCRETIZATION OF AGGREGATE MODEL AND GENERAL SOLUTION
FOR CRYSTAL SHEARS

To discretize the above-defined aggregate model, we introduce a kinematically admis-
sible, approximating infinitesimal displacement field which is continuous throughout the
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aggregate and piecewise linear within each crystal grain. Correspondingly, a crystal sub-
volume with constant microstrain field is represented by a tetrahedral element, herein
called a crystallite, with nodal points I, J, K, L (Fig. 2). The infinitesimal displacement
du(x) within the crystallite ¢ is readily expressed in terms of the nodal displacements
ou™ as (see [30], for example)

Su(x) = 3, ¢i(x)ou™ (5.1)

M(g)

Xz

X

Fi1G. 2. Tetrahedral crystallite showing orientation of crystal axes and kth slip system.

wherein
Ph(x) = oy + B x;. (5.2)

The constants of,, p%,; are determined from the nodal coordinates of ¢ through the equations
Pl(x?) = 83, J,M = 1,...,4 (where 83 is the Kronecker delta). The local incremental
strain field is

55(4) = Z B,’," ouM (5.3)
M(q)
in which
BY = DT¢i(x). (5.4)

From virtual work considerations (see [31] for additional details), the incremental dif-
ferential field equation D 6 = 0 within the unit cube is replaced by the set of discrete
equations '

¥ Dqs?,faz';'@dv; =0 (5.5

q(J}

over the crystallite nodes J at which dispfacements are to be determined. Resolving the
infinitesimal strain field as in (4.2), (4.3), then, from (4.4), {4.8), (5.3) and (5.4), equations
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(5.5) are separable into two sets, the first of which can be solved independently of the second.
These equations are written in general matrix form as

BJSB,; 50U = KU = —BJSB, 6U° (5.6)

K 6U* = BISNT I’ (5.7

in which sU® = (..., u®M, .. ) is the overall vector of unknown elastic nodal displace-
ments, 3U° is the vector of prescribed displacements corresponding to dg through (2.3) ) and
(2.6), 6U° = (...,6u"™,...) is the overall vector of “slip” displacements, and oI’ =
(..-,0Yq>---) is the overall vector of incremental shears. The matrices B; (defined over

nodes J of unknown displacements) and B, (defined over nodes J° of prescribed displace-
ments) are composed of 6 by 3 elements B, given as

_ {A(q)[iz = A, D" ¢3 if J is a node of (g) 5.
“ "~ 10if J is not a node of (g). '

The matrices S and N are diagonal in the sub-matrices C; ' and N,
S=rc;'lJ, N=IN._l (5.9

and the aggregate elastic “stiffness’” matrix K is symmetric and positive-definite, arbitrary
rigid body motion having been eliminated from the solution by prescribing SU°. (In the
above, all crystallites have been chosen of equai volume V, « 1 for convenience. This is
easily realized geometrically since a cubic volume can be separated into six equal volume
tetrahedrons, and the unit cube can be divided into as many sub-cubic grains as desired.)

From (5.3), (5.6) and (5.7), the overall vectors of strains SE® = (...,08,..) and
OE* = (..., 088, .. )are

SE©@ = AT[I-B,K 'BfS]B, 6U° (5.10)
SE* = ATB,K 'BISN 6T’ (5.11)

with A = [TA,, . (It is understood that N and 6T are defined only over those crystallites
g containing potentially active slip systems.) The overall vector of incremental, resolved
shear stresses 61° = (..., 0%, ,. - .) due to internal slip follows from (4.8)+4.10) and (5.11):

6T* = —NQNT6I' = —P*oI (5.12)
wherein
Q = S[I-B,K 'B’S]. (5.13)

In Section 6 it is proved that the symmetric matrix P* is positive-definite, whence, forming
the scalar product of (5.12) with éI', we have a discrete counterpart of (4.11). The influence
(or interaction) matrix Q is analogous to the integrodifferential operators on J&P(x) in
[20, 32].
From (4.4), (4.9), (5.10) and (5.12), denoting 6T = (..., 6%, ...), we have
ST = NQ[B, 5U° —NT 5T]. (5.14)
Since, in each critical system,

0%, < 0%, = Hi(T,) 6%, (5.15)
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the final matrix equation for the incremental crystal shears can be expressed (denoting
H = rH(q)—l)

(H+NQNT)sT ~NQB, 6U° > 0 (5.16)

with the equality satisfied for each active system (67, > 0). The matrix P = H+NQN”
is positive-definite over critical (hence, active) slip systems, and (5.16) yields a unique
solution for I, as proved in the following section.

6. UNIQUENESS OF INTERNAL FIELDS AND A QUADRATIC
PROGRAMMING PROBLEM

Introducing the positive-definite scalar average

i, = géimc{q» 3V, > 0 (6.1)

we have, from (4.1), (4.9) and (5.13)(5.14),
i1, = (B 6U°~NT 6INTQ(B, 60U’ —NT 3TV, > 0. (6.2)

Assume two distinct sets of internal fields 68, 6&,), 0¥, and 68%,, 0E%,, 5¥%,, both of which
satisfy all appropriate equations of the discretized model for an infinitesimal macrostrain
de (i.e. uniquely prescribed 6U°). Denoting their differences by AL, = 88, —oC¥), etc.,
then from the above

ASTTNQNT A 6T > 0. 6.3)

This equation is written only over potentially active slip systems corresponding to the
current states of internal stress and strain, since the active systems for either set of incre-
mental shears will belong to this critical group. Thus, P* = NQNT7 is positive-definite
over critical systems. We also find, from (4.10), (5.11) and {6.2),

> AL, . AGER,+ASTTNQNT AT = 0. (6.4)
q

Introducing an inequality due to Hill [24] written over critical systems of a crystal grain,
A3y, - DG, > AdYH AN, (6.5}

we conclude from the above that, for H > 0, the incremental shears are unique. It follows
from (5.14) that the incremental stress field is unique. Consequently, the infinitesimal total
strain field is unique, and the proof is complete. The matrix P = H+NQNT in (5.16) is
obviously positive-definite.

Since an admissible solution of (5.16) is constrained by the physical requirement
8%, = 0 for all k (which is implicit in 6.5), determination of the unique aggregate response
from a particular deformed state is not necessarily a straightforward calculation. If, for
example, (5.16) is solved for 8T on the expectation that all critical slip systems will be active
in a macrostrain increment Jg, certain of the 87, may be computed as negative. In this
event {5.16) must again be solved, after eliminating the appropriate slip systems (thereby
changing P), until all incremental plastic shears are positive. This could prove to be a
rather lengthy procedure for a large number of critical systems. Alternatively, evaluation
of the 4%, may be posed as a quadratic programming problem, as follows. We form the
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functional

161 = 1 6T'TP 6T — 6T "NQB,, 6 U° (6.6)

wherein T is any set ofAincremental shears, defined over the critical slip systems, which
satisfies the inequality SI" > 0. Then, from (5.16) and (6.6),

KoD) = 1(8T) = (61 — oT)"P(ST" — 6T) + o1 7(P T —NQB, 5U?) > 0 6.7)

unless oF" = oT. Hence, the unique solution T of the discrete model minimizes the quad-
ratic functional I(31') subject to the linear constraints 59, > 0. For a discussion of the appli-
cation of nonlinear programming techniques in classical (macroscopic) plasticity theory,
see [33].

7. GENERAL CHARACTERISTICS OF SUBSEQUENT YIELD SURFACES

At a particular stage of aggregate straining, a subsequent yield surface s defined (in
stress or strain space) by determining the positions of the various yield hyperplanes. Con-
sider the case of applied biaxial strain € = (¢,,, &,,). From (4.2)

&o = Tt 7.0
in which the columns of the matrix Y, are found from separate evaluations of the elastic
solution (5.10) for the states ¢,,, ¢,, = 0 and ¢,,, £,; = 0, respectively. The distance to the
kth yield planej’k = 0 in macrostrain space is then determined from (4.4), (4.9), (7.1) and
the equality 7, = 7, as '

D, = (flc‘r_fk)/”NkC(;)lY‘(q)”’ (7.2)
and, in macrostress space, the distance to the yield hyperplane j‘”k = 0 is found to be

j‘)k = (flér - f;)/"NkC(;)lY‘(q)émacro “ R (73)
in which

‘E; = fi + NkC(;)lf(q)(s - émacma) (74)

is the residual microstress that would remain upon unloading to zero macrostress (if the
subsequent yield surface contains the origin in stress space). In the above, C,,,.,, is calcu-
lated from (4.7) and & = (g,,, 6,,) is computed using (2.11). The aggregate yield surface
is, of course, the inner bounding set of all such hyperplanes (7.2) [or (7.3)] in the respective
strain (or stress) space. Apparent macroscopic plastic strain and *‘plastic stress” increments
are appropriately defined as

687 = 5e—C,,, . 08 (7.5)

o8° = CL, de—08. (1.6)

macro
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From a general inequality established by Hill [25], the following orthogonality conditions
apply to the aggregate continuum model:

56,. 56" < 0 (1.7)
Sg,. 067 < 0 (7.8)

in which dg, is any macrostrain increment which produces purely elastic response of the
aggregate, and da, = C, L, d¢,. The orthogonality relations can be interpreted as general-
ized normality condmons on plastic strain and plastic stress increments in stress and strain
space, respectively. These inequalities also hold for 087 and 8* of the discrete model (7.5),
(7.6), save for a possible 0(h} discretization error, where h is an average crystallite dimension.
(A strict proof of convergence of the discrete model solution, with decreasing element size,
to that of the corresponding aggregate continuum is included within a forthcoming paper
{34})

Consider now the change in position of an active plane with increasing plastic defor-
mation. Since k corresponds to the active sense of slip in a particular crystallographic
system, we redefine it as (k +) and write

5D(k+) (bT(H) 5ri)/”NkC(;)1Y(q)“' (7.9)

From {5.12) {or (4.11) for the continuum]

) (Z 5% 5yk) V.= —8T.PoTV, <. (7.10)
k

q (q)

As this inequality must hold locally for the majority of active systems, we can assume it
holds for the particular k of interest. Thus 67} < 0 and (7.9)

3Dys, = (OT% +10T/INC i T - (7.11)

Similarly, the change in the distance (in the opposite direction in strain space) to the parallel
plane corresponding to the negative sense of slip (k—) in this crystallographic system is

8Dy, = (325 =167/ INCig T (1.12)

Thus, if the change in crystal hardening 6%~ in reverse slip is less than the change in the

&
resolved shear stress due to internal slip and self-straining, 6D, ., < 0 and the two hyper-
planes move in the same direction. This is certainly the case when the crystal strain-softens
in reverse slip (as is suggested by the experimental work of Paterson [35] on copper), and
there will be a corresponding strong Bauschinger effect in macrostram space. There will

be at least a weak Bauschinger effect if only ot < 6t%*), hence 5D(k ) < 5D(k+) This
inequality is satisfied for both Taylor hardening [1, 36] and the translational hardening
adopted by Budiansky and Wu [10] and Tung and Lin [19], as well as for any positive
combination {32]

H = h(y)l + c(y)NNT. (7.13)

(1is an N by N matrix all of whose elements are unity and h and c¢ are scalar hardening
functions determined from single crystal tests.) In addition, H of (7.13) is at least positive-
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semidefinite, and if ¢ > 0, H > 0 over critical systems [24, 32]. It can also be shown that
Jér’.éde < 0. (7.14)

(See [31] for details.) Thus, from (7.3) and the above, the Bauschinger effect also obtains
in macrostress space. A digital computer program for studying the quantitative effects of
aggregate texturing, crystal structure and anisotropy, and crystal hardening laws on
macroscopic yield surfaces is in preparation, with numerical results to be presented in
subsequent papers.
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APPENDIX
Internal stress and infinitesimal strain tensors are expressed in vector form as
C= (11> VX 12s V@135 $225 V223, (33)T (Al)
08 = (311, /(2 0812, () 0815, 0855, /(2) 25, 08 33)" (A2)

from which the equilibrium and kinematic equations can be written D{ = 0 and D éu =
o€, with

" 1 1 7
81 ﬁaz ?/_263 O 0 0
1 1
D=0 ﬁal 2, ﬁ@, 0 (A3)
1 1
0 0 ;661 0 ﬁaz 8,

(wherein @; denotes partial differentiation with respect to the corresponding spatial co-
ordinate).

The kth row vector of the crystal transformation matrix N is given in terms of unit
vectors ¢¥ AF in the normal and glide directions, respectively, of the kth crystaliographic
slip system:

1 1
Ne = | G150 + g0 0t o,

¢’;z’;,ﬁ<¢zz’;+¢'szzx wé]. (Ad)

{Received 25 May 1970; revised 8 September 1970)

AbcTpakT—Onpenensercs AUCKpeTHAs MOAENb, MPUIOAHAS ANs aHaau3a I1OBEACHUS IIOJMKPUCTAJLIN-
YECKOr'o 3alOJIHUTENSA MO BIMUAHUEM MAKPOCKOMMYECKU OIHOPOAHON, KBA3UCTAMMYECKOH HAIPY3KHM, CO
CHEeUUAIBHBIM Y4€TOM XaPaKTEPUCTHK IIOBEPXHOCTENM TeYeHUs B IPOCTPAHCTBE HANpAXeHHii v nedopmanmnm.
BHyTpeHHHe HanpskeHus u nedopMauuu ONpeaessitoTcs NyTeM NPUOIMNKEHHUS KYCOMHBIX, JHHEHHBIX,
MHPHANTEIMMANBHBIX ToJiel aedopMaluii ¢ KpUCTAUTMYECKUMU 3€PHAMMU, HA OCHOBE LIMPOKO ONpeaenet-
HOTO KOHCTUTYTMBHOTO [MOBEAEHHUS, KOTOPOE AAaeT BO3MOXHOCTH BKJIIOYHTH KyOW4YECKYIO MM IeKcaro-
HANIBHYIO KPHUCTAJUIMYECKYIO aHU30TPOMHIO M COOTBECTBEHHO OOLIME 3aKOHbl YNPOYHEHUs AJIA KPHCTA-
JIIMYECKUX CHUCTEM CKOJIbXKEHMS. BbIBOAATCH COOTBECTBYIOUWIME MATPULLL 3AMOJIHUTENS B KAYeCTBE
CMMMETPHYECKLIX M MOJIOKUTENBHO ONpPeNeeHHbIX. BHyTpeHHHe IONf, COOTBECTBYIOLLME DEIUIEHUIO
AVMCKPETHON MOMe/M, OKa3blBAOTCHA €AMHCTBEHHbIMH. Jlajiee yka3aHO, 4TO OCTATOYHOE pellleHue [nst
[IpUpAlLEeHNs CABHTOB KPHMCTA/UIOB MOXHO pAacCMATPHBATL B KAadyecTBe 3a4ayd KBAJApPATauyeOKOHO

nporpaMMHpoBaHue.



